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ABSTRACT 
 
If affect control theory (ACT) can accurately predict affective impressions of technology, it can 
be expanded to human-computer interaction. We compared ACT’s predicted impressions to 
actual collected impressions in three studies. Predicted impressions were 5-20% less accurate 
for technology actors than human actors (Study 1), similarly accurate in evaluation and activity 
for technological actors and objects after communication behavior (Study 2a), and 17-28% more 
accurate for technological actors than objects after physical behaviors (Study 2b).   
Overall predictions were accurate for technology two-thirds to three-fourths of the time, 
suggesting ACT’s utility for modeling human-computer interaction, though there is room for 
improvement. 
 
INTRODUCTION 
 
People interact socially with technological agents, from Twitter Bots harassing users to 
conversations with Siri. We ask how well ACT’s impression formation predictions apply to these 
social technologies in human-computer interaction.  
 
ACT (Heise 2007, Robinson and Smith-Lovin 2006) is a predictive mathematical social 
psychological theory that proposes people develop impressions when observing social 
interactions based on their cultural sentiments. It proposes that both participants and observers 
adjust their situational impressions to align more closely with cultural sentiments. Both these 
stable cultural sentiments and the situational transient impressions and measured in terms of 
evaluation (how good or bad something seems), potency (how weak or strong something seems), 
and activity (how inactive or active something seems; EPA).  
 
ACT scholarship has previously investigated how algorithms and artificial intelligence can 
enhance ACT (Hoey et al. 2018, Schröder, Hoey and Rogers 2016), how ACT can be integrated 
into computer agents to improve interaction with people (Heise 2004, Lin et al. 2014, Morgan et 
al. 2019), and how people use technology to modify their own affective impressions (Lulham 
and Shank 2023, Shank and Lulham 2017). In contrast, here we examine how well ACT’s 
impression formation equations predict impressions of the technology itself after a social 
interaction involving it. As ACT was designed to predict human impressions in human-human 



interaction, if it could adequately predict technology impressions in human-computer interaction 
the theory’s scope could be expanded. 
 
Impression formation equations predict how the EPA sentiments from an actor behavior object 
event alter the EPA impressions of the actor, behavior, and object involved in it (Heise 2007). 
These equations are based on data from people’s perceptions of human impression change in 
human-human interactions. Entering EPA cultural sentiment data for any actor behavior object 
event into the equations produces prediction outcomes of the impressions for that actor, 
behavior, and object.  
 
Previous research has found that computer agents enacting the same social behavior as humans 
tend to lead to different, usually less extreme, EPA impressions (Shank 2013, 2014), often based 
on perception of agency of the computer agent (Shank 2014). Yet, no previous research has 
formally tested ACT’s impression formation equations as applied to technological agents. 
Therefore, we ask: how well can ACT predict affective impressions of technology in human-
computer interaction? Study 1 addresses impression predictions for actor and compares the 
technology predictions to human predictions. Study 2 compares technological actors to objects 
across two behavioral domains.  
 
STUDY 1: ACTOR IMPRESSIONS FOR TECHNOLOGY AND HUMANS 
 
In Study 1, we address how well ACT can predict the impressions of technological actors in 
human-computer interaction and compare this to the benchmark of its predictions for human 
actors in human-human interaction. Because ACT requires cultural sentiments in order to predict 
impression in interactions, we first collect sentiments of well-known technology which will have 
the most stable and agreed-upon sentiments. 
 
Technology Sentiments and Selection 
 
We identified 128 well-known technologies, and 151 US adult Prolific participants (see Table 
A1 for exclusions and demographics) were presented with 50 at random. They rated the 
technologies on semantic differential scales for evaluation (anchored from “bad, awful” to 
“good, nice”), potency (“powerless, weak” to “powerful, strong”), and activity (“slow, quiet, 
inactive” to “fast, noisy, active”) with slider-bars from -4 to +4. Each integer was represented 
with as adverb label above it such “neutral” for 0, “slightly” for ±1, “quite” for ±2, “extremely” 
for ±3, and “infinitely” for ±4. Between subjects, the order of the scales was randomized, and 
each scale’s orientation was randomized. To collect only well-known technologies, the 
instruction asked participants to select “Skip/I’m not familiar enough to rate this concept” for 
any concept they did not know well, and we placed this option before the EPA scales to make it 
more salient.  
 
We retained the 69 terms that were skipped less than average as the most well-known 
technologies. Each was rated by at least 35 participants (Table A2). The sentiments of each 
technology were computed by taking the average for evaluation, potency, and activity 
respectively, across all participants who rated it.  
 



Human Comparisons 
 
To compare technologies to humans, we matched each of these 69 technologies to the human 
identity (taken from the Smith-Lovin et al. 2019 dataset) that was the most similar in sentiments 
using Euclidean distance (Table A2). Several technology terms matched to the same human 
identity, and in that case, we chose to only keep one of those technologies – the one that we 
deemed most unique, specific, or well-known. Therefore, we retained 56 technologies and 56 
corresponding unique human identities as stimuli (Table A2).  
 
Study Design  
 
Each participant rated the actor in 30 actor behavior object sentences, randomly chosen from the 
56 technology-human pairs. For each of the 56 pairs, one of eight actor behavior object 
sentences was presented according to a two (actor identity: technology vs human) by four 
(behaviors) factorial design. We selected four behaviors (from Smith-Lovin et al. 2019) with 
differing sentiments that could reasonably be done by these technologies: helps (Evaluation: 
3.43, Potency: 2.56, Activity: 1.62), fails (-2.29, -1.00, -.63), pleases (2.53, 1.67, .59), and 
disappoints (-2.42, -.30, -.33). The object of the actor behavior object sentence was “a person” 
(.92, .59, .43; Smith-Lovin et al. 2019) for all stimuli. Participants saw the actor behavior object 
sentence, followed by “This actor is …”, with a skip option and EPA scales. For example, the 
eight factorial conditions for the spam bot technology are “A spam bot 
helps/fails/pleases/disappoints a person. This spam bot is...” and for the matched human “A 
womanizer helps/fails/pleases/disappoints a person. This womanizer is…”  
 
Participants and Ratings 
 
405 US adult Prolific participants rated the impressions with the EPA semantic differential scales 
with the order and orientation of the scales randomized in the same way as the sentiment data 
collection (see Table A1 for demographics and exclusions).  
 
After data collection, we realized Android may have interpreted it as a humanlike robot or the 
phone brand, so we removed it and its matched human identity. Each of the remaining 440 
sentences (55 technologies * 8 conditions) was rated 24.6 times and skipped 2.2 times on 
average. Actor impressions were calculated for each sentence by averaging the ratings for 
evaluation, potency, and activity, respectively, across all participants who rated it for a total of 
220 human impressions and 220 technology impressions.  
 
Results 
 
Using ACT’s impression formation equations, we predicted the 220 impressions for each of the 
technological actors in each of the actor behavior object events. Comparing the ACT predictions 
with the actual impression data, showed that 66.4% evaluation, 55.9% potency, 77.2% activity 
impression predictions were accurate, within 1 point. 
 
Using ACT’s impression formation equations, we also predicted the 220 impressions of each 
human actor in each actor behavior object event. Comparing the ACT predictions with the 



actual impression data, showed that 86.4% evaluation, 60.9% potency, and 87.3% activity 
impression predictions were accurate, within 1 point. These were significantly more accurate 
than the technology impression predictions for evaluation (difference: 20.0%; Chi-Squared(1, 
440)=24.38, p<.001) and activity (difference: 10.1%; Chi-Squared(1, 440)=7.54, p=.006), but not 
for potency (difference: 5.0%; Chi-Squared(1, 440)=1.132, p=.287).  
 
Therefore, while ACT is better at predicting impressions of human actors in human-human 
interaction than for technological actors in human-computer interaction, it is only by a small 
amount (5-20%). Compared to this human prediction benchmark, we consider this level of 
accuracy quite decent considering that none of the ACT equations were designed for human-
computer interaction. 
 
STUDY 2: IMPRESSIONS OF TECHNOLOGICAL ACTORS AND OBJECTS 
 
In Study 1, we addressed how well ACT predicts the impressions of technological actors 
behaving towards people. When people behave toward technology, then the technology becomes 
the object in the actor behavior object event. In Study 2, we compare how well ACT can predict 
the impression of technology as an actor or an object in human-computer interaction. To enhance 
the generalizability of our results we use behaviors that systematically differ in sentiments. In 
order to find such behaviors that can be done both by and to technology, we conducted this study 
in two domains: with conversational technologies (Study 2a) and with physically moving 
technologies (Study 2b).  
 
Technology and Behavior Selection 
 
For Study 2a, we selected 8 conversational technologies (A chatbot, A Twitter bot, A virtual 
assistant, An Amazon Alexa, An Amazon Echo, A Google Assistant, A Google Home, and Siri) 
and 15 behaviors (misunderstands, defers to, taunts, makes fun of, deceives, ignores, harasses, 
threatens, obeys, complies with, requests something from, understands, and listens to). For Study 
2b, we selected 8 physically interacting technologies (A delivery drone, A drone, A humanlike 
robot, A robot, A robotic dog, A robotic toy, A self-driving vehicle, and Tesla’s self-driving car) 
and 12 behaviors (hides from, avoids, flees from, overlooks, monitors, hits, attacks, watches, 
observed, and examines). In both studies, we selected two behaviors, when available, from each 
of the eight octants of sentiment space (i.e., ± Evaluation * ± Potency * ± Activity) that we 
determined could be reasonable done by or to those technologies.  
 
Design  
 
Study 2a/b was a 2 (technology position: actor or object) by 15/12 (behavior) within-subject 
design. For each of the 30/24 conditions, participants were randomly assigned to one of the 8 
technologies for that study for a total of 240/196 sentences. When the technology was assigned 
to be the actor, the object was “a person” and when the technology was assigned to be the object 
the actor was “a person.” The sentences were presented as actor behavior object, followed by 
“This technology is …” followed by the skip option and three EPA scales. For example, the 
behavior misunderstands was presented twice to all participants in Study 2a, each time with a 
randomly chosen technology. So once, if Amazon Echo was selected for the object, it would read 



“A person misunderstands an Amazon Echo. This Amazon Echo is…”. The other time, if a 
Twitter bot was selected for the actor, it would read “A Twitter bot misunderstands a person. 
This Twitter bot is…”. 
 
Participants and Ratings  
 
US adult Prolific participants, 241 for Study 2a and 236 for Study 2b, rated the impressions with 
the EPA semantic differential scales with the order and orientation of the scales randomized 
similar to the previous study (see Table A1 for demographics and exclusions). For Study 3a/b, 
Each of the 240/196 sentence was rated 27.8/27.6 times and skipped 2.2/1.7 times on average. 
Technology impressions were calculated for each sentence by averaging the ratings of 
evaluation, potency, and activity, respectively, across all participants.  
 
Results 
 
We predicted the impressions (240 for Study 2a and 196 for Study 2b) for each of the 
technological actors or technological object in each of the actor behavior object events using 
ACT’s impression formation equations. The sentiments used for the technologies in these 
predictions were the technology sentiments collected in Study 1 (Table A2).  
 
For Study 2a, comparing the ACT predictions with the actual impression data for technological 
actors indicates that 67.5% evaluation, 67.5% potency, and 66.7% activity impression 
predictions were accurate, within 1 point. Making the same comparisons for technological 
objects indicates that 64.2% evaluation, 95.0% potency, and 56.7% activity were accurate within 
1 point. Accuracy of technological actors and objects are not statistically different for evaluation 
(difference: 3.3%; Chi-Squared(1, 240)=0.30, p=.586) nor activity (difference: 10.0%; Chi-
Squared(1, 240)=2.54, p=.111), but object potency was statistically more accurate than actor 
potency (difference: 27.5%; Chi-Squared(1, 240)=29.78, p<.001).  
 
For Study 2b, comparing the ACT predictions with the actual impression data for technological 
actors indicates that 81.3% evaluation, 88.5% potency, and 72.9% activity impression 
predictions were accurate, within 1 point. Making the same comparisons for technological 
objects indicates that 58.3% evaluation, 71.9% potency, and 52.1% activity were accurate within 
1 point. Accuracy of technological actors was statistically greater than accuracy for technological 
objects for evaluation (difference: 28%; Chi-Squared (1, 192) = 11.96, p<.001), potency 
(difference: 16.6%; Chi-Squared (1, 192) = 8.40, p=.007) and activity (difference: 20.8%; Chi-
Squared (1, 192) = 8.89, p = .004). 
 
Therefore, in human-computer interaction that deals with physical behaviors ACT better predicts 
impressions of technological actors than technological objects by a moderate amount (17-28%). 
Yet, for conversational behavior ACT was similarly accurate at predicting evaluation and 
activity impressions of technological actors and objects. Yet 27.5% more potency predictions 
were accurate for technological objects. Given that the other accuracies in Study 2a range from 
56.7-67.5%, the outlier of 95.0% accurate may be due to impressions changing less when being 
the recipient of a conversational action which often doesn’t weaken or strengthen one’s power.  
 



DISCUSSION   
 
How well do ACT’s impression formation equations predict affective impressions of technology 
in human-computer interaction? Across three studies we showed that ACT can accurately predict 
impressions of technology, with some qualifications. Across EPA and the actor or object 
position, ACT’s technology impression accuracy ranged from 52.1% to 95.0%. Average 
accuracy was 67.5% for evaluation, 75.8% for potency, and 65.1% for activity. It was 71.5% for 
technological actors and 66.4% for technological objects. Therefore, we conclude that ACT’s 
predicted impressions of technology in human-computer interaction are accurate for roughly 
two-thirds to three-fourths of the time. This is comparable, albeit slightly lower, than ACT 
prediction accuracy for human impressions in human-human interaction in Study 1. Overall, this 
shows that ACT predictions of technological impressions are fairly accurate and robust to the 
specific type of actors and objects involved in the interaction. This justifies using ACT in future 
predictions and hypotheses in human-computer interaction.  
 
Sensitivity to Accuracy Cutoff 
 
There is no set method for assessing accuracy in the ACT literature and traditional analyses of 
statistical significance are not appropriate for equation-based impression predictions. For our 
analyses we arbitrarily selected a 1-point difference to represent prediction accuracy, as 1 point 
is the smallest meaningful change in impression labels (e.g., from “slightly” to “quite”; Heise 
2007, 2010).  
 
Supplemental analyses show that changing this accuracy cutoff simply shifts the results but 
doesn’t change comparison conclusions. For example, shifting to a 2-point difference in accuracy 
means that ACT accurately predicts impression of over 90% of the technological actors and over 
95% of human actors in Study 1. Alternatively, shifting to a 0.5-point difference reduced ACT’s 
accuracy to about 35% for technological actors and about 45% for human actors in Study 1. 
Thus, the overall accuracy shifts the pattern of results when using a more conservative or liberal 
metric. 
 
Generalizability  
 
We believe these results are robust and therefore generalizable. In Study 1 we considered 55 
different technologies of all different types, but only 4 behaviors. Yet, in Study 2 we narrowed 
down to only 16 technologies in two different behavioral domains but were able to examine 27 
behaviors that were systematically selected from across EPA sentiment space. Therefore, across 
these studies we examined a broad range of technologies, behaviors, and events. Notability, the 
newest technologies like ChatGPT and Microsoft Bard were not included, although these new 
AI-based technologies arguably seem more humanlike and therefore may be better predicted by 
ACT. Future studies should examine these by building on our foundational results. 
 
Limitations, Challenges, and Future Work 
 
Human-computer interaction has become more social, but still has many challenges since 
technologies are not people. 



 
First, digital technologies rapidly change from creation to obsolescence, and only somewhere in-
between could they qualify as having stable cultural sentiments (Heise 2010). Thus, they may be 
less stable than human sentiments and more influenced by experiences and technological 
enculturation (King 2008, Shank 2010). Therefore, we focused on only well-known social 
technologies, first through our own selection, then through only retaining those that were known 
by most participants. Still, a limitation is the changing nature of technological systems and their 
sentiments, compared to sentiments of other terms which change more slowly over time (Heise 
2010). Related, despite attempts to find technologies with sentiments across EPA space, the 
majority of technologies were positive on all three dimensions (Table A2). Future research could 
sample technologies with distributed sentiments from Table A2 or elsewhere (e.g., Lulham and 
Shank 2023, Shank 2010).  
 
Second, many behaviors do not make sense to be done by or to many technologies because the 
technologies are limited in purpose, design, or expectations or behaviors may be interpreted 
differently for technology and humans. For example, Siri cannot flee from a person and a drone 
does not typically thank someone. Due to this, we were limited to four generic behaviors in 
Study 1 and were able to expand to only 27 behaviors by having two specific domains for Study 
2. Future research may want to employ specific domains, like in Study 2, to ensure that there are 
not mismatches between technologies and behaviors. 
 
Third, our studies all used a person as the human interactant identity, somewhat simplifying the 
situations that we examined. Using a person affected the impression predictions and our ability 
to generalize to other situations. Bad or powerful humans interacting with technology might 
prove easier or harder to predict. In addition to future research considering a range of human 
identities, our research sets the stage for an investigation of affect control theory predicting 
impressions of computer-computer social interaction. 
 
Concluding Implications 
 
Over the past few decades, ACT has greatly expanded in theoretical reach into new domains 
(MacKinnon and Robinson 2014). Herein, we have added to that by showing how the impression 
formation process, a major component of ACT, functions for human-computer interaction. Since 
the impression formation processes is sequentially prior to the control principle, we believe a 
next step would be to demonstrate the affect control process applied to human-computer 
interaction. If the control principle functions similarly for human-computer interaction, then the 
scope conditions could be expanded to include technology. Even so, ever-changing technologies 
may not have stable cultural sentiments and may not function like many human identities. Future 
empirical research should consider stable and less stable human and technological identities. 
 
Integrating human-computer interaction into ACT will enhance its capacity to be integrated into 
social technologies (e.g., Lin et al. 2014). As social interactions with artificial intelligence, 
algorithms, and smart assistants become more commonplace understanding implications of that 
ultimately relies on the scientific understanding of those social interaction processes. ACT’s 
modeling of impressions in human-computer interaction shows that while our social interactants 
might sometimes now be machines, our perceptions of them are still based on affective meaning.  
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Appendix 

Appendix Table A1: Participant Demographics by Study 

  Technology 
Sentiment Data 

Study 1 Study 
2a 

Study 
2b 

Total Participants 153 430 267 251 

   Excluded for not completing a 
majority of the ratings 2 23 24 12 

   Excluded for not spending a majority 
of life in the US 0 2 2 3 

Total Usable Participants 151 405 241 236 

   Mean Age [range] 
25.1 

[18-54] 

27.4 

[18-68] 

35.8 

[19-73] 

37.5 

[18-
70]  

   Completed Some College 85.4% 89.9% 85.5% 90.2% 

   Gender     

      Male 17.2% 14.6% 21.2% 21.2% 

      Female 81.5% 81.0% 74.7% 77.5% 

      Other, or prefer not to say 1.3% 4.4% 3.7% 1.3% 

   Race/Ethnicity     

      White 62.5% 67.9% 73.9% 74.2% 



      Asian 11.2% 8.9% 6.2% 7.2% 

      Hispanic 11.8% 9.9% 6.2% 4.7% 

      Black 7.2% 5.2% 6.2% 9.7% 

      Other/Mixed 7.2% 8.1% 7.4% 4.2% 

   Region     

      West 25.8% 27.0% 18.5% 21.2% 

      South    31.1% 32.0% 38.7% 37.7% 

      Midwest 23.2% 20.7% 23.9% 25.4% 

      Northeast 19.8% 10.5% 18.5% 15.7% 

 
 
Appendix Table A2: List of 69 Terms Retained from Technology Sentiment Data with Ns 
(Percent Skipped) and EPA Sentiments from Technology Sentiment Data, Human Matched 
Identity and Euclidian Distance from the Technology Term for Study 1, and Terms used for 
Study 2 

 Sentiment Data Study Study 1 Human Match 

Technology 
Term (Used in 
Study 1) 

N 
(Skipped 
%) 

Evaluation Potency Activity Identity Euclidian 

A Computer 
Virus 

57 (6.6) -3.20 1.88 0.60 Murderess 0.750 

A Criminal Facial 
Recognition 
Algorithm 

41 (29.3) 1.78 2.15 0.71 Diplomat 0.259 

A Customer 
Service Bot 

64 (12.3) 0.03 -0.26 -0.11 Pagan 0.195 

A Delivery 
Dronep 

42 (27.6) 1.37 1.53 1.62 building 
contractor 

0.091 

A Dronep  51 (10.5) 1.50 2.00 2.26 construction 
foreman 

0.101 

A Facial 
Recognition 
Algorithm 

57 (1.7) 1.44 2.02 0.64 Principal 0.256 



A Fingerprint 
Recognition 
Algorithm 

61 (4.7) 2.13 2.49 0.47 Bodyguard 0.282 

A Home Security 
System 

60 (10.4) 2.79 2.55 1.30 Mother 0.167 

A Humanlike 
Robotp 

53 (20.9) -0.18 1.50 1.63 divorce 
lawyer 

0.365 

A Music Playlist 
Algorithm 

49 (2.0) 2.24 1.12 1.02 graduate 
student 

0.184 

A Next Word 
Prediction 
Algorithm 

57 (17.4) 1.63 1.01 0.62 Christian 
missionary 

0.156 

A Robotp 41 (19.6) 0.69 1.91 1.32 Mayor 0.258 

A Robotic Dogp 40 (21.6) 0.57 0.38 1.88 street 
preacher 

0.279 

A Robotic Toyp 50 (15.3) 1.35 0.42 1.75 Miner 0.116 

A Roomba 60 (17.8) 1.97 1.17 0.90 social worker 0.229 

A Self-Driving 
Vehiclep 

52 (14.8) 0.81 1.80 0.96 commissioner 0.196 

A Smart Phone 55 (0) 3.15 3.02 2.19 Hero 0.156 

A Smart TV 55 (3.5) 2.66 2.01 1.80 Fundraiser 0.369 

A Smart Watch 57 (8.1) 2.52 1.92 0.91 pediatrician 0.225 

A Spam Bot 43 (27.1) -2.54 0.42 1.66 womanizer 0.283 

A Spam Detector 
Algorithm 

47 (21.7) 1.42 1.00 0.06 church 
deacon 

0.038 

A Speech-to-Text 
Algorithm 

45 (8.2) 2.21 1.51 0.94 foster mother 0.038 

A Text-to-Speech 
Algorithm 

54 (1.8) 1.93 1.42 1.02 black 
professional 

0.084 

A Twitter Botc 46 (17.9) -1.18 0.26 0.70 Divorcé 0.200 

A Vacuum Robot 56 (11.1) 2.03 0.99 0.94 Bride 0.126 

A Video Game 
Enemy Bot 

42 (25.0) 0.67 0.91 1.47 Feminist 0.151 



A Video Game 
NPC (Non-Player 
Character) 

43 (25.9) 1.53 -0.33 0.00 houseguest 0.270 

A Video Game 
Teammate Bot 

39 (20.4) 0.51 0.35 0.66 Blonde 0.167 

A Virtual 
Assistantc 

44 (29.0) 1.80 1.60 0.99 Education 
administrator 

0.104 

Amazon Alexac 57 (12.3) 1.35 1.35 1.12 Store owner 0.106 

Amazon Echoc 43 (21.8) 1.66 1.50 1.05 Ship engineer 0.174 

Amazon's Product 
Recommendation 
Algorithm 

41 (16.3) 1.34 1.17 0.96 Collaborator 0.060 

An Advertisement 
Algorithm 

51 (15.0) 0.13 1.34 0.93 Critic 0.229 

An Algorithm 50 (12.3) 1.20 1.98 1.04 Administrator 0.206 

An Androida 44 (25.4) 0.85 1.44 1.03 Customs 
officer 

0.112 

An Apple Watch 48 (12.7) 2.41 2.01 1.01 Foster father 0.210 

Facebook’s 
Friend 
Recommendation 
Algorithm 

49 (14.0) 0.40 0.52 0.39 Plaintiff 0.860 

Facebook's Group 
Recommendation 
Algorithm 

40 (23.1) 0.77 0.38 0.47 Black man 0.117 

Facebook's News 
Feed Algorithm 

41 (29.3) -0.22 1.07 1.43 Pawnbroker 0.382 

Facebook's 
Recommended 
Post Algorithm 

47 (17.5) 0.10 1.00 0.96 Bailsman 0.405 

Google Assistantc 46 (24.6) 1.35 1.33 0.65 Lecturer 0.077 

Google Homec 49 (19.7) 1.90 1.93 0.97 Airline pilot 0.127 

Google's Search 
Algorithm 

47 (2.1) 2.43 2.43 1.60 Parent 0.183 



Instagram's 
Recommended 
Stories Algorithm 

53 (11.7) 1.00 0.83 0.85 Truck driver 0.045 

Instagram's 
Suggested Posts 
Algorithm 

54 (10.0) 0.69 0.86 0.63 In-law 0.115 

My Starbucks 
Barista 

38 (24.0) 2.61 1.73 1.69 Elementary 
School 
teacher 

0.140 

Netflix's 
Recommendation 
Algorithm 

58 (0) 1.76 1.31 0.65 Civil engineer 0.094 

Pinterest's 
Recommend Posts 
Algorithm 

45 (21.1) 1.72 1.08 0.64 Husband 0.096 

Roku TV 51 (17.7) 2.36 1.55 1.33 Supporter 0.156 

Sims (from The 
Sims) 

44 (22.8) 2.12 -0.02 1.32 Mail carrier 0.357 

Snapchat's 
Recommended 
Stories Algorithm 

48 (12.7) -0.05 -0.16 0.67 Unwed parent 0.193 

Spotify's Playlist 
Algorithm 

60 (9.1) 2.55 1.66 1.10 Optimist 0.048 

Tesla’s Self 
Driving Carp 

49 (16.9) 1.13 2.04 1.25 Supervisor 0.168 

Tiktok’s “For 
You” 
Recommendation 
Algorithm 

49 (9.3) 2.13 2.45 1.96 Police officer 0.320 

Twitter's News 
Feed Algorithm 

42 (22.2) 0.97 1.10 0.90 Guy 0.215 

YouTube's 
Recommended 
Video Algorithm 

58 (3.3) 1.56 1.22 1.12 Air Force 
reservist 

0.250 

Technology 
Term (Not Used 
in Study 1) 

      



A Chatbotc 38 (28.3) 0.09 -0.07 0.74 Unwed parent 0.211 

A College 
Admissions 
Algorithm 

35 (28.6) 0.14 1.10 -0.15 Informer 0.333 

A GPS (Global 
Positioning 
System) 

59 (0) 2.99 2.49 1.53 Mother 0.206 

A Job 
Recruitment 
Algorithm 

46 (27.0) 0.89 0.85 0.36 Polymath 0.109 

A Mars Rover 42 (27.6) 2.87 2.83 1.42 Mother  0.405 

A Personal Home 
Assistant 

46 (24.6) 1.53 1.79 1.08 Ship engineer 0.199 

A Product 
Recommendation 
Algorithm 

52 (10.3) 0.82 1.13 0.63 Guy 0.125 

A Self-Checkout 
Kiosk 

59 (0) 2.64 1.79 1.89 Fundraiser 0.324 

An Auto Correct 
Algorithm 

52 (8.8) 1.75 1.39 0.97 Air Force 
reservist 

0.069 

Google Maps 60 (0) 2.57 2.11 1.10 Physician 0.208 

Google Translate 58 (1.7) 2.66 2.14 1.33 Physician 0.252 

Siric 52 (0) 1.87 1.71 1.30 Deputy 0.188 

Snapchat’s 
Discover Page 
Algorithm 

54 (15.6) -0.05 -0.16 0.67 Unwed parent 0.127 

a Removed from Study 1 due to ambiguity. 
c Conversational technology used in Study 2a. 
p Physical movement technology used in Study 2b. 
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