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ABSTRACT 

 

   Connected graphs hold special interest for network exchange  

researchers because all experimentally-studied networks are connected  

graphs. Competing theoretical proposals differ in the predictions they  

make for some sets of connected graphs, but not for other sets. Yet  

researchers do not have at their disposal any catalogue of connected  

graphs for even relatively small-sized groups. In this article, I  

review the theoretical basis for an algorithm that generates all  

connected graphs of a particular size and provide a pseudo-code version  

of the algorithm itself. I then address some considerations regarding  

its use in the network exchange field. 
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INTRODUCTION 

 

   All of the exchange networks studied experimentally in the field of  

network exchange research are connected graphs, wherein the nodes are  

positions and the lines are exchange relations (i.e., relations in  

which agreement on the terms of exchange produces mutual benefit).  

Further, all positions are connected to one another either directly or  

indirectly. This connectedness of the set of positions is essential  

since the very nature of network exchange research focuses on how  

indirect connections affect the relative power of actors who are  

directly connected to one another. The graphs vary in size, with six  

positions being the largest for which published data exist (Skvoretz  

and Willer 1993). 

 

   Network exchange research presently harbors several contending  

theories of power distribution. Evaluating these theories involves many  

considerations, including parsimony in the assumptive base, breadth of  

coverage, predictive precision, and embeddedness in accepted  



explanatory frameworks (e.g., rational choice theory). One important  

consideration is empirical accuracy: does one proposal make more  

accurate predictions than the others? For many graphs, the contenders  

make very similar predictions and so they cannot be used to assess  

accuracy. Rather, research must use those graphs (if any) for which the  

alternatives make different predictions. Currently, discovery of such  

candidates is a hit-or-miss proposition as there exists no accessible  

catalogue of connected graphs with which to systematically search for  

"critical" networks. 

 

   In addition to the evaluation of empirical accuracy, a catalogue of  

connected graphs could aid in the development of particular approaches,  

as can be exemplified by Lovaglia, Skvoretz, Markovsky, and Willer  

(1995). These authors use a series of "thought experiments" to refine  

the Graph Power Index (GPI) approach first proposed by Markovsky,  

Willer, and Patton (1988): Refinements are proposed to solve  

problematic networks and then evaluated by inspecting the predictions  

offered for other networks of similar size or configuration. Only those  

refinements that offer sensible predictions are retained for  

empirically-based evaluation. Hence, a catalogue of connected graphs is  

needed grist for the "thought experiment" mill. 
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ALGORITHMS FOR GENERATING GRAPHS 

 

   The problem of generating all connected graphs for a set p of points  

is a combinatorial problem. One procedure for generating combinatorial  

configurations of a certain type is called the "classical method" by  

Read (1978). In this procedure, there are two lists: one of old  

configurations and one of new configurations. Potential candidates for  

the new list are created by performing an operation on an old  

configuration, e.g., adding a node and an edge to one of the points in  

the old configuration. The candidate is added to the new list only if  

it is not already present. Doing this, however, requires checking the  

candidate against each of the items already present on the new list, a  

time-consuming process insofar as there are usually many isomorphic  

versions of any item on the new list, and each of these versions must  

be detected and discarded. For instance, the three networks in Figure 1  

are isomorphic (i.e., they exhibit the same structure). Therefore, on  

any list of connected graphs of size 4, only one of them can appear. As  

the size of the graph and the number of edges grow, the combinatorial  

possibilities explode. 

 

        A - B        B - C        A - C 

         \ /          \ /          \ / 

          C            A            B 

          |            |            | 

          D            D            D 

 

      Figure 1.  Three isomorphic graphs. 

 

   Read (1978) proposes a general algorithm that does not require  

looking back over the new list to detect and discard duplicates. In  

this procedure, as each candidate is produced it can be immediately  



tested for inclusion on the new list by simply inspecting the  

configuration itself. Hence, Read titles his paper "Every One a Winner"  

because the candidate is added to the new list only if it is a winner.  

A principle advantage of this algorithm is that the list of new  

elements can be stored externally since searches of it are never  

required. 

 

   Read's "orderly" algorithm may be described as follows. We must  

first specify which of all possible isomorphic configurations will  

represent its class in the list of configurations. This particular  

configuration is called the "canonical configuration." The center graph  

in Figure 1 is the canonical configuration for its isomorphism class.  

Canonicity is defined by representing the upper right triangle of the  

network's adjacency matrix as a binary integer, concatenating the first  

row of this triangle to the second, both to the third, and so on. The  

canonical configuration for the class is the one that produces the  

largest binary integer or code. The codes for the networks in Figure 1  

are 110101, 111100, and 110110, the second one being the largest. 
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   Second, we must specify an ordering of the list of canonical  

configurations. The binary integers corresponding to each canonical  

configuration form a logical basis for ordering the list. In fact, we  

arrange the list in descending order by these integers. 

 

   Finally, we must define an augmenting operation by which one element  

from an old list can produce an ordered sequence of potential elements  

on a new list in the order they would appear on the new list if they  

were found to be acceptable candidates. The operation we use takes the  

binary code of a canonical configuration of p nodes and q edges and  

produces potential candidates for the list of p nodes and q+1 edges as  

follows. The binary code of the input configuration is scanned from  

right to left to find the rightmost non-zero element. If the code is  

111100, this is the fourth element. Then the candidate configurations  

are created by changing in turn each of the trailing 0's to 1,  

proceeding from left to right. Thus, from 111100 we obtain two  

candidates, 111110 and 111101. 

 

   The algorithm involves processing an old list of canonical  

configurations, taking each element in turn, and creating potential  

candidates for the new list. For each candidate, the algorithm must  

discover if it is a canonical configuration by inspecting permutations  

of rows and columns in the underlying adjacency matrix for an  

equivalent configuration with a larger code value. If this value ever  

equals or exceeds the code value of the last configuration added to the  

new list, the candidate is not a canonical configuration and processing  

can move on to the next candidate. If the configuration is canonical  

and its code value is less than the new list minimum, it is a "winner,"  

allowing it to be added directly to the new list and the new list  

minimum to be updated. 

 

   The program that actually generates all connected graphs of a given  

size is presented in pseudo-code form in Table 1. Note that it  

generates all graphs whether connected or not and then retains only  



those that are connected. The algorithm is not effective if its  

operation is confined to just connected graphs. There are connected  

graphs with q+1 edges whose code number is greater than other connected  

graphs with q+1 edges but whose production from the ordered list of  

canonical connected graphs with q edges will occur after the production  

of those graphs with lower code numbers. Consequently, they will never  

be added to the new list. However, they will be produced before these  

other graphs if the augmentation operation applies over all graphs,  

connected or not. 
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input nodes 

initialize file "g00"  

        with bit-string of 0's {length =[nodes(nodes-1)]/2} 

for edges = 0 to [nodes(nodes-1)]/2 - 1 

  open file "g{nodes}{edges}" for input as #1 

  open file "g{nodes}{edges+1}" for output as #2 

  open file "g{nodes}{edges+1}c" for output as #3 

  initialize current minimum code value 

  while not end-of-file #1 

    read string from #1 

    find rightmost non-zero element of string 

    for each trailing zero 

      change to 1 and create new adjacency matrix 

      for each permutation of rows and columns  

        compare binary number of permuted adjacency matrix with current 

                minimum and if greater, try next trailing zero 

        compare binary number of permuted adjacency matrix with current 

                maximum and if greater, save as new maximum 

    set current minimum =3D maximum 

    write maximum to #2 

    if connected, write maximum to #3 

  wend 

close #1, #2, #3 

end 

 

Table 1: Pseudo-code for an orderly algorithm  

         to generate connected graphs 

 

    Even though the orderly algorithm is relatively more efficient than  

the "classical" approach, it still becomes time consuming as the number  

of nodes increases. On a 90mhz Pentium it will take about 2 hours to  

generate all the connected graphs over 7 nodes, where one finds 853  

non-isomorphic connected graphs. Over 8 nodes, there are 11,118  

connected graphs. Consequently, generating the catalogue of these  

graphs takes literally days of CPU time. Thus, it is unreasonable for  

each researcher to generate his or her own catalogue of connected  

graphs. Instead, the catalogue, once generated, should be made widely  

accessible. Consequently, I supply an Appendix which catalogues all  

connected graphs from size 2 to size 7 and can supply upon request the  

catalogue of size 8 connected graphs. A Sun SparcStation is currently  

at work (on a part-time basis since December) generating all size 9  

connected graphs. 
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CONCLUSION 

 

   In addition to advancing theoretical inquiry, the catalogue of  

connected graphs can standardize nomenclature for experimental  

networks. For instance, the graph in Figure 2 is called "KITE" in the  

work of Markovsky, Skvoretz, Willer and colleagues (Markovsky,  

Skvoretz, Willer, Lovaglia, and Erger 1993; Skvoretz and Willer 1993)  

and "HOURGLASS" in the work of Bienenstock and Bonacich (1993). The  

catalogue provides a canonical name for this graph: namely, the number  

of nodes, followed by the number of edges, followed by its location in  

the canonical ordering. Thus the graph in Figure 2 has the canonical  

name "p5e6.2" because it is the second graph in the canonical listing  

of all connected graphs with 5 nodes or points and 6 edges. 

 

                    B - C 

                     \ / 

                      A 

                     / \ 

                    D - E 

 

      Figure 2: The connected graph p5e6.2 

 

 

   The catalogue also provides a canonical way of labeling the nodes of  

an entry. One simply assigns letters to nodes in alphabetical order and  

then builds the adjacency matrix as specified by the bit string, thus  

standardizing how graphs are drawn for research reports. 

 

   Both uses of the catalogue become more salient as the size of the  

networks investigated becomes larger. Investigators from different  

approaches can more easily communicate with one another over  

problematic graphs since, in switching to a standardized naming system,  

we avoid "pet" names that reflect accidental circumstances surrounding  

an approach's discovery.  

 

  Thus, the actual use of the catalogue appears to depend on (a)  

maintaining theoretical heterogeneity in exchange network research, (b)  

extending empirical and theoretical investigation to relatively large  

networks (say, 7, 8 and 9 node networks) and (c) making accessible an  

organized catalogue of connected graphs. 

 

  The track record of the network exchange research field over the last  

10 years suggests condition (a) will hold for the foreseeable future.  

The present paper guarantees the satisfaction of condition (c). And the  

internal dynamic of theoretical development via conjecture and  

refutation pushes the explanatory envelope in the direction consistent  

with condition (b). Only empirical extension may lag for the usual  

budgetary reasons. 
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ENDNOTE 

 

*Reviewers provided helpful comments and suggestions. Address  

correspondence to: skvoretz-john@sc.edu 
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